
Submicroscopic and Physics Simulation of
Autonomous and Intelligent Vehicles in Virtual Reality

Olivier LAMOTTE, Stéphane GALLAND
Multiagent Simulation in Virtual Cities
System and Transportation Laboratory

University of Technology of Belfort-Montbéliard
90010 Belfort cedex, France

Email: {olivier.lamotte,stephane.galland}@utbm.fr

Jean-Michel CONTET, Franck GECHTER
Multiagent Systems for Intelligent Vehicle

System and Transportation Laboratory
University of Technology of Belfort-Montbéliard

90010 Belfort cedex, France
Email: {jean-michel.contet,franck.gechter}@utbm.fr

Abstract—Simulation, which creates abstractions of the
system is an appropriate approach for studying complex
systems that are inaccessible through direct observation and
measurement. Many simulators aimed at studying vehicles
dynamics are existing. Most of them are focusing on mechan-
ical simulation of the vehicle with a special focus on tyre/road
contact. The main drawback of these is the requirement of
real vehicle (this can be a simple prototype) to build a dynam-
ical model. Another drawback is the difficulty to integrate
virtual sensors and onboard artificial intelligence abilities.
The aim of Virtual Intelligent Vehicle Urban Simulator is
thus to overcome the general drawbacks of classical solutions
by providing the possibility of designing vehicle virtual
prototype with well simulated embedded sensors. This paper
presents the global architecture of the simulator and draws
some comparisons of simulations with real experiments.

Keywords-Multiagent-Based Simulation; Physics Simula-
tion; Autonomous Vehicle.

I. INTRODUCTION

Many simulators aimed at studying vehicles dynamics
are existing. Among the most popular, we can cite Callas
and Prosper [?] and widely used in automotive industry.
Most of them are focusing on mechanical simulation of
the vehicle with a special focus on tyre/road contact,
also known as submicroscopic simulation of vehicle [?].
The main drawback of these is the requirement of real
vehicle (this can be a simple prototype) to build a dy-
namical model. Generally, the model is built by testing
the real vehicle with embedded sensors, generally ac-
celerometers, in a set a possible dynamical conditions
(wet road, snow, curves, etc.). Another drawback is the
difficulty to integrate virtual sensors and onboard artificial
intelligence abilities. Taking virtual camera as example,
they are generally reduced to a simple pinhole model
without distortion simulation for instance. In this context,
System and Transportation Laboratory decided to develop
a simulation/prototyping tool, named Virtual Intelligent
Vehicle Urban Simulator (VIVUS), aimed at simulating
vehicles and sensors, taking into account their physical
properties and prototyping artificial intelligence algorithms
such as platoon solutions [1] or obstacle avoidance de-
vices [2]. The aim of VIVUS is thus to overcome the
general drawbacks of classical solutions by providing the
possibility of designing vehicle virtual prototype with well

simulated embedded sensors. The main interests of this
solution are:

• Prototyping artificial intelligence algorithms before
vehicle first prototype construction. In this case, ar-
tificial intelligence systems can be developed, tested
and tuned with a virtual prototype of real vehicle.

• Testing critical and/or banned use cases, i.e., cases
that implies partial or total destruction of vehicles, to
draw the limits of the retained solutions.

• Testing and comparing several algorithms/solutions
for embedded functionalities with a low development
cost. It can thus help to choose future embedded
devices related to retained solutions requirements
(processing power needs, connectivity, etc.).

• Testing and comparing sensors solutions before inte-
grating them into the vehicle.

• Integrating tests and evaluations results into vehicle
design process.

• Using informed and documented virtual reality to
access attribute and state values of the vehicle, its
components, and environmental objects around.

The participation of the System and Transportation
Laboratory to CRISTAL project [?] allowed to test the
developed tools under specific constraints.

During the first part of this project, tests were made
in simulation in order to compare platoon solutions under
several criterium (inter-vehicle distance measurement, sta-
bility proofs, lateral error between two following vehicles,
sensors limitations, etc.). For this step, the vehicle model
used was based on laboratory prototype models that don’t
have the same physical properties as final vehicles. During
the second phase, it is planned to go into further tests
including vehicle final models (physical model, energetic
model, retained sensors models, etc.). This paper presents
the developed simulator architecture and draws results
obtain during the first phase of the project. Theses results
are then compared with real experiments performed with
laboratory prototype electrical vehicles.
The paper is structured as follow: Section 2 explains
VIVUS simulator architecture, and details vehicle and
sensors models. Then, Section 3 draws some experimental
simulated results compared with experiments with real
vehicles. Finally, Section 4 concludes the paper by giving

some future works.

II. SIMULATION OF VIRTUAL VEHICLE

One of the major goals of VIVUS is the validation
in a virtual universe of automatic control algorithms of
simulated vehicles. This set of algorithms includes pla-
tooning algorithms. Consequently it is essential to recreate
an environment close to vehicles and be able to simulate
the vehicles themselves, their sensors, and the events
happening in vehicle’s environments. VIVUS may be run
under real time constraints. Indeed because algorithms
embedded in virtual vehicles and real vehicles are the
same, the virtual simulator may provide performances as
close as possible to reality.

Simulation of virtual vehicles is, on one hand, to sim-
ulate the physical behaviors of the vehicles. In the other
hand, simulation may compute perception data for vehicle
sensors and may control the vehicle board. Physical simu-
lation is handled by a physics simulation software, which
allows to apply forces to the different vehicle components
(dampers, motors, feign, etc.). All these components are
3D objects on, which physic-based relationship are apply.

The rest of this section focuses on the models of VIVUS,
the virtual autonomous vehicle, and sensors.

A. Simulator Architecture

As previous expressed, VIVUS is a 3D-based simulator,
which supports physics simulation and realistic 3D ren-
dering. According to game and serious game literature,
virtual simulators are mainly composed by the following
modules and related data structures: physics simulator,
artificial intelligence simulator, and 3D rendering engine.
Unfortunately theses modules cannot use the same data
structures for efficiency concerns [3]. VIVUS simulator
model follows this way and has one module for the
physics engine, one for 3D rendering and one for control
algorithms. Figure 1 illustrates the overall architecture.

Control algorithms are external software, which retreive
sensor information from VIVUS and send back control
orders. These orders are received and applied by the
physics engine. Platooning algorithms [1] are successfully
applied conjointly with VIVUS platform.

Physics 3D Model is based on the PHYSX engine.
This engine is one of the best considering the accuracy
and the realistic behavior obtained. PHYSX is an engine
simulating physical laws in 3D. The physics model is
defined by 〈E,L〉 where E and L are respectively the
sets of simulated objects and physics laws. Objects sup-
ported by the physics simulation engine are defined by
〈G, p, o,m, Sl, Sa, Al, Aa〉; m is the mass of the object;
Sl (resp. Sa) and Al (resp. Aa) are the current linear (resp.
angular) velocity and acceleration of the object. p and o are
the current position and orientation of the object. Finally G
is the geometrical shape associated to the simulated object
(basically a box, a cylinder or a sphere). Equation 1 is the
transformation applied by the physics simulator at each
simulation step t to obtain the model state at step t+1. Let
δt and f be respectively the current state of the simulated

Physical 3D

Model

Graphical

3D Model

Physical Low

Level Sensors

Graphical Low

Level Sensors

Logical Level

Sensors

Kinematic Effectors

Simulation Life

Cycle Controller

Control Algorithm

VIVUS MODEL

User

queries

queries queries

provides data

sends actions

u
p
d
a
te

s

sends

controlling

events

n
o
ti

fi
e
s

GUI

Figure 1. VIVUS global architecture

world and the function that is mapping a simulated object
to a motion request. Operator

∏
ω permits to detect and

solve conflicts between motion requests from all ω objects,
according to physics laws. Operator ⊕ computes a new
world state from a given one and a set of motion actions.

〈E,L〉 7→ 〈E,L〉 × E 7→ R3

δt+1 → δt, f
→ δt

⊕∏
f(e)

e∈dom f

(1)

During each simulation step, the physical 3D model
notifies the graphical 3D model about each change. This
last model is applying the newly received position and
orientation on the graphical representations of the physical
objects. According to our model separation assumption,
the graphical model data structure is based on classical
3D scenegraph.

Figure 2 illustrates the sequence of actions run during
one simulation step. Kernel has role to schedule all the
components of VIVUS. Kernel runs control algorithms,
registers influences given by these algorithms and runs
PHYSX, in order. Control Algorithm may obtain informa-
tion from the simulated objects. In this way it senses the
world model via a set of high level — logical — sensors.
In the given sequence diagram example, only graphical
sensors are represented. Details on the differences be-
tween high level and low level sensors are explained in
Section II-C. From the sensed data, control algorithm is
able to decide an action, which is given to the Kernel.
The control algorithm stage is repeated for each available
algorithm. Then Kernel is able to launch the physics sim-
ulation, which will retreive algorithm’s influences, solve
them and apply resulting reactions [3][4]. For each moved
object inside the physics model, a notification is sent to the
3D rendering engine to update its internal data structures.

Figure 2. Sequence Diagram for one Simulation Step

B. Physics Model of Vehicles
In order to obtain simulation results as near as possible

from the reality, a complete physical model of vehicles has
been made. This section presents the dynamical model of
SeT laboratory vehicle platform RobuCab4 illustrated by
Figure 3.

Figure 3. Systems and Transportations Laboratory vehicles : RobuCAB4
(top), GEM SET CAR (bottom)

This model has been designed to suit PHYSX engine
requirements. Models designed for PHYSX are based
on composition of PHYSX elementary objects. New el-
ementary components can also be defined using PHYSX
requirements. Vehicle dynamical modelisation is a com-
mon task in simulation. The RobuCAB vehicle is then
considered as a rectangular chassis with 4 engine/wheel
components.

This choice can be considered to be realist, the chassis
being made as a rectangular un-deformable shape. As

for the engine/wheel components, RobuCAB4 platform
owns 4 wheel drive each of them being directly linked to
one electrical engine. The following parts describe all the
parameters determined and/or computed for the vehicle.

1) Chassis model: Chassis is modeled as a rectangular
shape with a size denoted C, a mass denoted Mc and a
gravity center Gc. Considering vehicle design, the follow-
ing propositions can be exposed:

C =

 Lc

lc
hc

 Gc =

 0
0
hzs

 (2)

Gravity center position Gc of the chassis has been
computed taking into account gravity center of the body,
gravity center of each component of the chassis, i.e.,
battery, embedded electronic card and components, etc.
Wheel/engine components are not included in this com-
putation.

2) Tyre and shock absorber models: Wheels are mod-
eled as dynamical objects. Each wheel is considered to
have diameter R and a mass Mwheel. Dynamical object
being defined, they can be set at specific position.

Tyre grip computation function takes tyre sliding as an
input. Lateral and longitudinal tyre sliding are computed
separately. The output of this function is the tyre grip. This
value can then be interpreted depending on the tyre model
used.

PHYSX tyre model computes tyre friction constraints
from a Hermit spline.

Model parameters have been defined from standard data
for 130/70-10 Michelin tyre. Then extremum A, asymptote
B and rigidity coefficient, Px for longitudinal and Py for
lateral, have been defined thanks to several experiments
made on the real vehicle.

Shock absorber model is defined by PHYSX with sev-
eral parameters such as damping constant Aa, stiffness Ar

and free length Al. All these constants were defined from
real vehicle experiments.

3) Engine model: Engine model proposed by PHYSX
corresponds to a standard engine with a starting torque
Cd and a braking torque Cf . Real vehicle engines are
electrical engines with permanent magnet allowing it to
make both acceleration and braking. After experiments
with a standalone engine, Cd and Cf values have been
determined.

4) Summary of the vehicle physical model:
• Lc = 1.95 m chassis length
• lc = 1.195 m chassis width
• hc = 2.3 m chassis height
• Mc = 350 kg suspending mass
• hzs = 52 cm gravity center height
• R = 42 cm wheel diameter
• Mwheel = 7 kg wheel mass
• L = 1.2 m semi-length
• e = 1.1 m semi-width
• hcenter wheel = 19 cm height of wheel axis
• Ar = 1000 stiffness constant
• Aa = 330 damping constant
• Al = 12 cm shock absorber free length
• Cd = 500 MKG starting torque
• Cf = 500 MKG braking torque
• A = (1.0; 0.02) Extremum coordinates
• B = (2.0; 0.01) Asymptote coordinates
• Px = 15 tyre longitudinal sliding rigidity
• Py = 15 tyre lateral sliding rigidity

C. Sensor Architecture

Real vehicles are equipped with a set of sensors
for immediate environment perception: laser rangefinders,
sonars, GPS, monoscopic and stereoscopic video cameras.
One of the first steps to design VIVUS is to identify the
different types of sensors to simulate. They are classified
into different categories according to the type of data they
produce, an:
• image sensor produces a bitmap;
• video sensor produces a sequence of bitmaps;
• ray-based sensor provides collisions on a predefined

set of rays;
• communication sensor provides information from an

external source (WiFi network, etc.);
• location sensor gives the vehicle position and orien-

tation; and
• state sensor provides the state of the vehicle or one

of its components.
Sensor algorithms are directly used by control algo-

rithms. Because control algorithms may be the same in
virtual vehicle and real vehicle, sensor algorithms must
provide the same output data as the real sensors: same
data format, frequency and data quality. VIVUS does not
reproduce the internal physics of sensors. Physical and
accurate simulation of such sensors is already supported
by commercial offers (CIVIC, etc.). Sensor algorithms
implement simple models, which have the same output
properties as the real sensors. This choice of simplicity
is due to real-time constraint required by the rest of the
VIVUS simulator.

To meet the different types of sensors, the simulation
environment has been divided into 3 levels: physical
low level, graphical low level, and logical level. This

decomposition is the basis of the overall architecture
implementation for the design of the tool.

Physical low level sensors depend on the physical
attributes of simulated vehicles (shock, acceleration, brak-
ing, etc.) on one hand. In the other hand they also
depend on calculations based on the 3D geometry of
the environment. Given laser rangefinders for example,
low level sensor computes intersections between the 3D
objects in the universe and line segments, which are the
representing the lasers. The graphical low level sensors
use graphic images from the 3D projections computed
from significant points of view with specific resolution
and frequency. For a stereoscopic camera, the sensor
generates two bitmaps from the points of view of the two
cameras. They are generated by the 3D graphical engine.
But, for performance concern, they are not displayed but
directly sent to high level sensors. Finally, logical high
level sensor take informations from one or more low level
sensors, format them, and apply filters and modifiers. For
example, GPS sensor takes global position and orientation
of the vehicle in PHYSX object, and translate these 3D
coordinates into longitude-latitude pairs.

With this general architecture, we have considerable
freedom as to the accuracy of data from sensors and trans-
mitted to the control algorithms. Indeed, virtual sensors
are composed of two parts: the low level sensor to collect
data from the virtual universe, and the high level sensor to
organize data from the lower level so that they meet the
exact specifications of the real sensor. It is easy, in this
second part, to integrate noise on data to see even these
disruptions (real time or after a pre-established scenario).
It is almost important that the simulator may enable
specific circumstances, failure of a sensor, for example,
or a loss of GPS accuracy. Moreover, sensor simulation in
virtual universe is often criticized for its too high level of
perfection. Indeed, let us consider the example of virtual
cameras, 3D rendering engine is able to produce very
precise bitmaps without visual default. But real cameras
are not perfect at all. VIVUS is thus able to reproduce
these defaults. Once again, organization of sensors allows
to apply different filters on sensor informations to match
them with whose from real sensors.

III. EXPERIMENTS

This section show a comparison between a vehicle
simulation and a real vehicle experimentation thanks to
a non trivial application: vehicle platoon system.

A. Application presentation

Linear platoon configurations, i.e., virtual trains of
vehicles are a promising approach to new transportation
systems [5], with innovative capabilities. Platoon systems,
when applied to civil vehicles, have been mainly studied
as a way to increase track density in highways. More
recently, linear platoons have been studied as the basic
technology to implement new passenger transportation
services in urban environments, with a high adaptability to
user needs and safety improvement thanks to automated

or semi-automated driving assistance (obstacle detection
and avoidance, automatic car parking, etc.).

A basic problem in platoon systems is the control of
the vectorial inter-vehicle distance. Some of the more
followed approaches are based on automatic control. In
this frame, the control of global platoon geometry has
been decomposed in different sub-problems: longitudinal
control (distance regulation), lateral control (angle regula-
tion), integrated lateral and longitudinal control. Most of
the lateral or longitudinal control proposals are based on
PID (Proportional, Integral, Derivative) control [6][7].

A reactive, autonomous longitudinal and lateral control
approach, intended for urban area transportation, with
stringent conditions: small curve radius and constrained
merge and split operations has been developed [1].

In this approach, vehicle’s behavior and interactions
are specified from a physics inspired model, as described
next. For the sake of a simpler presentation, we abstract
from lateral control and focus the presentation on
rectilinear train’s displacement.

A train is composed of n vehicles V0, · · · , Vn−1. The
first one, V0 is assigned the functions of navigation.
Vehicle Vi (i > 0) measures the distance vector to vehicle
Vi−1 (the preceding one) and calculates an interaction
force based on the mechanical laws of a virtual spring
damper place between Vi and Vi−1. The interaction forces
intervene in the calculation of an acceleration vector to
be applied to the vehicle. The virtual spring damper
model bases on stiffness k, damping factor h and spring’s
un stretched length l0. The forces involved are : spring
force ~Fs and the damping force ~Fd. Each vehicle Vi
is represented by its position ~Xi = [xi,yi]. The mass
of the vehicle is denoted by m (we assume that each
vehicle has the same mass). The distance between vehicles
is d = ‖ ~Xn+1 − ~Xn‖. Newton law of motion allows
to calculate the vehicle acceleration in the preceding
vehicle’s reference:

Spring force ~Fs = −k(‖ ~Xn+1 − ~Xn‖ − l0) ~un+1 n

Damping force ~Fd = −h(~̇Xn+1 − ~̇Xn)

m∗~γ = −k(‖ ~Xn+1− ~Xn‖− l0) ~un+1 n−h(~̇Xn+1− ~̇Xn)

By integration, speed and vehicle’s state (position and
orientation) can be determined and the command law
(vehicle’s direction and speed) can be computed.

B. Simulation and experimental protocol

Based on this algorithm, simulation and experimenta-
tion scenarios are designed and performed to check the
platoon evolution particularly during lateral displacement
situations and a set of safety platoon conditions.

Simulation are realized with the simulator (cf. Fig-
ure 4, top) presented in this paper. The second platform
is composed of RobuCAB and GEM electrical vehicles
modified by the Systems and Transportations Laboratory
(cf. Figure 3). These vehicles have been automated and
can be controlled by a onboard system.

Figure 4. Simulation of a platoon vehicle Station (top) and Simulation
and experimentation path (bottom)

Experiments were conducted on the Belfort’s
Technopark site. The simulations were performed
on a 3D geolocalized model of the same site built from
Geographical Information Sources and topological data.

Figure 4 (bottom) shows the path (white curve) used
for the simulation and experimentation. This path allows to
move the train on a long distance in an urban environment
using a trajectory with different curve radius.

To compare the simulation and experimentation results,
parameters were the same on simulation and real experi-
ments. Thus, the perception of each vehicle is made by a
simulated laser range finder having the same characteris-
tics (range, angle, error rate, etc.) as the vehicle real sensor.
The distance and angle between vehicles are computed
thanks to this sensor.

The algorithm used is the same for both simulations
and real experiments. Moreover, the program runs on
the same computer. Indeed a great attention has been
paid on the fact that simulated vehicles should have the
same communication interface as the real ones. Thus,
passing from simulation to real vehicle relies only on
unplugging artificial intelligence computer from simulator
and plugging it on real vehicle. However, experiments
were performed with a more important regular distance in
order to avoid collision that can lead to irreversible damage
for vehicles. The regular distance has been established to
4 m and the safety distance to 1.5 m.

C. Comparison between experimentation and simulation

This subsection presents tests performed both in sim-
ulation and with real vehicles to assess the quality of
platooning. The following cases were discussed:
• Evaluation of inter-vehicle distance: measuring the

distance between two following vehicles, compared
to the desired regular inter-vehicle distance during
platoon evolution.

• Evaluation of lateral deviation: measuring the dis-
tance between the trajectories of the geometric center
of a vehicle relative to the same path of his pre-
decessor. For the measurement, points on the first
vehicle trajectory were selected. Then, the normal
trace of these points is drawn and a measure of the
distance between the selected point and the point of
intersection with the trajectory of its predecessor is
made.

Figure 5 (top) shows the distance variations between
vehicles in relation to quick changes of first vehicle speed.

(a)
(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 5. Inter-vehicle distance in simulation (top) and in real experi-
ments (bottom)

Figure 5 (bottom) shows the distance evolution between
two electric vehicles during the experiment.

One can observe that despite the very sudden changes in
first vehicle speed, this value is above the safety distance
and stabilizes rapidly to the regular distance. Figure 5 (top
and bottom) present the same inter-vehicle variation.

The distance between the trajectories of the vehicle
geometric center relatively to the same path of its
predecessor has also been evaluated. Lateral deviation
may cause problems in curves such as collision with
vehicles in the opposite direction.

Wheel Curve Medium Medium
rotation error in error in
(degree) simulation experimentation

5.73 18 m 12 cm 30 cm
11.46 9 m 30 cm 40 cm
17.2 6 m 50 cm 46 cm
22.9 4.5 m 55 cm 55 cm
28.65 3.6 m 67 cm 70 cm

Results presented in the table above show that the
tracking error of the vehicle simulation is close to the
experiment. Indeed, results representing the average error
between each car of the train have same order values.

IV. CONCLUSION

This paper presented VIVUS simulator aimed at testing
virtually prototyped vehicles with embedded intelligence
and perception ability. Referring to the results obtained

with this simulator and the comparison made with equiv-
alent real experiments, VIVUS can be considered as a
reliable tool for prototyping new intelligent vehicles and
testing dynamical properties in critical and/or forbidden
scenarios. Some research are now made to better simulate
sensors focusing on video sensors and especially there de-
fects such as lens flare phenomenon, chromatic aberration,
climatic condition influence (rain, snow, water projection,
etc.). VIVUS will now be used in the second phase of the
CRISTAL project to test platoon functionnality with near-
real virtual vehicles.

ACKNOWLEDGEMENT

The authors would like to thank Professors Abderraffı́âa
KOUKAM, Yassine RUICHEK, and Pablo GRUER for
their constant support and informed contributions.

REFERENCES

[1] J.-M. Contet, F. Gechter, P. Gruer, and A. Koukam, “Bending
virtual spring-damper : a solution to improve local platoon
control,” Lecture Notes in Computer Science, vol. 5544,
2009.

[2] F. Gechter, J.-M. Contet, P. Gruer, and A. Koukam, “Car-
driving assistance using organization measurement of re-
active multi-agent system,” in International Conference on
Computational Science 2010 (ICCS 2010), Amsterdam, May
2010.

[3] S. Galland, N. Gaud, J. Demange, and A. Koukam, “En-
vironment Model for Multiagent-Based Simulation of 3D
Urban Systems,” in the 7th European Workshop on Multi-
Agent Systems (EUMAS09), Ayia Napa, Cyprus, Dec. 2009.

[4] F. Michel, “The IRM4S model: the influence/reaction prin-
ciple for multiagent based simulation,” in Sixth International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS07). ACM, May 2007.

[5] J. Hedrick, M. Tomizuka, and P. Varaiya, “Control issues in
automated highway systems,” IEEE Control Systems Maga-
zine, vol. 14, no. 6, pp. 21 – 32, 1994.

[6] P. Daviet and M. Parent, “Longitudinal and lateral servo-
ing of vehicles in a platoon,” in IEEE Intelligent Vehicles
Symposium, Tokyo, Jpn, 1996, pp. 41–46.

[7] M. J. Woo and J. W. Choi, “A relative navigation system
for vehicle platooning,” SICE 2001. Proceedings of the
40th SICE Annual Conference. International Session Papers
(IEEE Cat. No.01TH8603), pp. 28 – 31, 2001.

